# Vape Detector using Computer Vision

Tanvi Anand<sup>1</sup>, Srijith Radhakrishnan<sup>3</sup>, Nikhil C Mohan<sup>3</sup>, Juhan Lee<sup>2</sup>, Rachel Oullete<sup>2</sup>, Dhiraj Murthy<sup>1</sup>, Grace Kong<sup>2</sup> <sup>1</sup>Computational Media Lab, UT Austin, <sup>2</sup>Department of Psychiatry, Yale School of Medicine, <sup>3</sup>Manipal Institute of Technology

### Introduction

- Social media has enabled rapid spread of e-cigarette content. TikTok is an important example.
- There remains a dearth of studies specifically exploring the image content in the videos in TikTok posts.
- We seek to address this gap by quantifying the prevalence of TikTok videos that contain a vape or a person vaping.

# Methods

- We scraped TikTok's website for videos that contain #vape, #vapestagram, #vapor, #vapecommunity, and #vapenation in their caption
- We labelled "vape", "smoke", and "hand" classes In 884 images from 254 distinct posts, with an 85:15 train:test split (i.e., 755 images for training and 129 for testing).
- We used transfer learning with YOLOv7 object detection algorithm for our research.

# Results

- Our model locates a vape, hand, and smoke in an image, with an F1 score of 0.81 on the test set.
- Our model has a recall value of 0.771 on all classes.
- This means that it locates approximately 771 videos out of 1000 on average that contain vape-related products and vaping behaviors.

# Image Categories and Model Results





| Class | Images | Labels | Р     |
|-------|--------|--------|-------|
| all   | 121    | 232    | 0.863 |
| hand  | 121    | 75     | 0.819 |
| smoke | 121    | 70     | 0.841 |
| vape  | 121    | 87     | 0.929 |

**Table:** Model results – class wise precision (P), recall (R), mean average precision (mAP)





0.844

0.578

0.77

# Conclusion

Our model detects the location of vapes, smoke, and hands (if any) in an image.

This model enables quicker detection of e-cigarette-related content which would otherwise be a time and laborintensive task, if carried out by a human.

Our method is especially useful in contributing automated and interpretable analyses of video data on a massive scale.

# **Future Work**

This object detection model can be expanded to detect other e-cigarette related content.

Analyses of object co-occurrence can give more information about the video. For example, if the vape, hand and smoke are in close proximity, it can be concluded that the person is vaping.

• This model can be used as a means of regulation on other social media platforms such as YouTube, Instagram, etc.

# Acknowledgements

Funding: National Institutes of Health Grant #: R01DA049878 (PI: Kong, G)

**Contact:** Tanvi Anand: tanviaanand@utexas.edu Dhiraj Murthy: Dhiraj.murthy@austin.utexas.edu